Kinetics: Rate of Appearance, Rate of Disappearance

Question

Consider the reaction below:

[latex]\begin{equation} \begin{gathered} 5\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_3^{-}(\mathrm{aq})+6\mathrm{H}^{+}(\mathrm{aq})\rightarrow3\mathrm{Br}_2(\mathrm{aq})+3\mathrm{H}_2\mathrm{O}(\ell) \end{gathered} \end{equation}[/latex]

If the rate of disappearance of Br (aq) at a particular moment during the reaction is 3.5 × 10−4 M s−1, what is the rate of appearance of Br2 (aq) at that moment?

 

Show/Hide Answer

[latex]\begin{equation} \begin{gathered} \frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}=2.1\times10^{-4}\mathrm{M}/\mathrm{s} \end{gathered} \end{equation}[/latex]

Refer to Section 4.2: Chemical Reaction Rates (1).

Strategy Map

Do you need a little help to get started?

Check out the strategy map.

Show/Hide Strategy Map
Table 1: Strategy Map
Strategy Map Steps
1. Write out the full chemical reaction rate expression.

Show/Hide Hint

For the reaction:

[latex]\begin{gathered} \mathrm{aA}+\mathrm{bB}\rightarrow\mathrm{cC}+\mathrm{dD} \end{gathered}[/latex]

Reaction rate:

[latex]\begin{equation} \begin{gathered} =-\frac{1}{\mathrm{a}}\dfrac{\Delta[\mathrm{~A}]}{\Delta\mathrm{t}}=-\frac{1}{\mathrm{~b}}\frac{\Delta[\mathrm{~B}]}{\Delta\mathrm{t}}=\frac{1}{\mathrm{c}}\frac{\Delta[\mathrm{~C}]}{\Delta\mathrm{t}}=\frac{1}{\mathrm{~d}}\frac{\Delta[\mathrm{D}]}{\Delta\mathrm{t}} \end{gathered} \end{equation}[/latex]

2. Identify which 2 expressions represent what you have and what you need.

Show/Hide Hint

Remember that your rates of disappearance will be negative and your rates of appearance will be positive.

Rate of disappearance of Br (aq) is always negative, therefore:

[latex]\begin{equation} \begin{gathered} \left(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta \mathrm{t}}\right)=-3.5\times 10^{-4}\mathrm{M}\mathrm{~s}^{-1} \end{gathered} \end{equation}[/latex]

Rate of appearance Br2 (aq):

[latex]\begin{equation} \begin{gathered} \frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}=? \end{gathered} \end{equation}[/latex]

3. Plug the rate given in the problem to the expression you created in your chemical reaction rate.

Show/Hide Hint

Enter the given value and units:

[latex]\begin{equation} \begin{gathered} \left(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta\mathrm{t}}\right)=-3.5\times10^{-4}\mathrm{M}\mathrm{~s}^{-1} \end{gathered} \end{equation}[/latex]

4. Solve for the rate of appearance of Br2.

Show/Hide Hint

Make sure to write out all steps as you rearrange the expressions and keep track of your signs and fractions.

Solution

Do you want to see the steps to reach the answer?

Check out this solution.

Show/Hide Solution

[latex]\begin{aligned} -\frac{1}{5}\left(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta\mathrm{t}}\right)&=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta \mathrm{t}}\right)\\\\ -\frac{1}{5}\left(-3.5\times 10^{-4} \mathrm{M}/\mathrm{s}\right)&=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\right)\\\\ -\frac{1}{5} \times \frac{3}{1}\left(-3.5\times 10^{-4}\mathrm{M}/\mathrm{s}\right)&=\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\\\\ \frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}&=2.1\times 10^{-4}\mathrm{M}/\mathrm{s} \end{aligned}[/latex]

Answer: [latex]\begin{gathered}\frac{\Delta[\mathrm{Br}_2]}{\Delta\mathrm{t}}=2.1\times 10^{-4}\mathrm{M}/\mathrm{s}\end{gathered}[/latex]

Guided Solution

Do you want more help?

The guided solution below will give you the reasoning for each step to get your answer, with reminders and hints.

Show/Hide Guided Solution
Table 2: Guided Solution
Guided Solution Ideas
This question is a calculation type problem that requires you to set up the chemical reaction rate to calculate the appearance of one compound given the disappearance of another.

Show/Hide Resource

Refer to Section 4.2: Chemical Reaction Rates (1).

If the rate of disappearance of Br(aq) at a particular moment during the reaction is 3.5 × 10−4 M/s−1, what is the rate of appearance of Br2 (aq) at that moment?

Show/Hide Think About This!

The problem gives that Br is disappearing (and, therefore, is a reactant). The rate of its disappearance is -3.5 × 10-4 M/s.

The problem also states that Br2 is appearing (and ,therefore, is a product). You are asked to find the rate of appearance of Br2.

The rate of a chemical reaction is the change in concentration over the change in time. Rate is always a positive value. Rate can be expressed in terms of the rate of disappearance of a reactant or in terms of rate of appearance of a product.

Rate = – Rate of disappearance of reactants:

[latex]\begin{gathered} =-\frac{\Delta[\text {reactants}]}{\Delta\mathrm{t}} \end{gathered}[/latex]

Rate = Rate of appearance of products:

[latex]\begin{gathered} =\frac{\Delta[\text {products}]}{\Delta t} \end{gathered}[/latex]

Show/Hide Don’t Forget!

Because reactant concentrations decrease with time as the reaction is proceeding, Δ[reactants] will be negative.

Since reactant concentrations are decreasing and Δ is final – initial, there must be a negative sign in front of the rate term for disappearance of reactants to relate it to the rate of the reaction.

Write out the chemical reaction rate expression in terms of rate of appearance of products and disappearance of reactants:

[latex]\begin{gathered} 5\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_3^{-}(\mathrm{aq})+6\mathrm{H}^{+}(\mathrm{aq})\rightarrow3\mathrm{Br}_2(\mathrm{aq})+3\mathrm{H}_2\mathrm{O}(\ell) \end{gathered}[/latex]

Show/Hide Think About This!
  1. Identify the reactants and products.
  2. Identify their stoichiometry.
  3. Set up the reaction rate expression using the given template.

For the reaction:

[latex]\begin{gathered} \mathrm{aA}+\mathrm{bB}\rightarrow\mathrm{cC}+\mathrm{dD} \end{gathered}[/latex]

Reaction rate:

[latex]\begin{gathered} =-\frac{1}{\mathrm{a}}\frac{\Delta[\mathrm{~A}]}{\Delta\mathrm{t}}=-\frac{1}{\mathrm{~b}}\frac{\Delta[\mathrm{~B}]}{\Delta\mathrm{t}}=\frac{1}{\mathrm{c}}\frac{\Delta[\mathrm{~C}]}{\Delta \mathrm{t}}=\frac{1}{\mathrm{~d}}\frac{\Delta[\mathrm{D}]}{\Delta\mathrm{t}} \end{gathered}[/latex]

Square brackets [ ] represent concentration in moles per litre (M)

Δ represents change, so Δ[ ] represents the change in concentration and Δt represents the time interval.

Since the stoichiometric coefficients are different for our species, we must divide each change in concentration by the appropriate coefficient to relate their rate of appearance and disappearance to each other.

Show/Hide Don’t Forget!

[latex]\begin{array}{lcl} \textcolor{blue}{\mathbf{5}}\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_3^{-}(\mathrm{aq})+6\mathrm{H}^{+}(\mathrm{aq})&\rightarrow&\textcolor{blue}{\mathbf{3}}\mathrm{Br}_2(\mathrm{aq})+3\mathrm{H}_2\mathrm{O}(\ell)\\ \textcolor{blue}{\uparrow}&&\textcolor{blue}{\uparrow} \end{array}[/latex]

What prediction can you make for the magnitude of the rates given the stoichiometry of the reactant and product in the question?

Show/Hide Don’t Forget!

Look at the stoichiometric coefficients. For every 5 moles of Br (aq) that disappears, 3 moles of Br2 (aq) appears.

Since the stoichiometric coefficient for Br is larger than for Br2, you can expect your numerical answer to be smaller than the rate you are given. Remember signs simply indicate appearance or disappearance.

Table 3: Complete Solution
Complete Solution
Set up the complete chemical reaction rate expression:

[latex]\begin{aligned} &\text {Rate }=-\frac{1}{5}\left(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta \mathrm{t}}\right)=-\left(\frac{\Delta\left[\mathrm{BrO}_8^{-}\right]}{\Delta\mathrm{t}}\right)=\\ & -\frac{1}{6}\left(\frac{\Delta\left[\mathrm{H}^{+}\right]}{\Delta\mathrm{t}}\right)=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\right) \end{aligned}[/latex]

Show/Hide Don’t Forget!

Remember that your rate of disappearance term needs a negative sign in order to represent a positive reaction rate.

Relate the two rates given in the question:

[latex]\begin{equation} \begin{gathered} -\frac{1}{5}\left(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta\mathrm{t}}\right)=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\right) \end{gathered} \end{equation}[/latex]

Plug the given rate value into the expression:

[latex]\begin{equation} \begin{gathered} -\frac{1}{5}\left(-3.5\times 10^{-4}\mathrm{M}/\mathrm{s}\right)=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\right) \end{gathered} \end{equation}[/latex]

Isolate and solve for the unknown:

[latex]\begin{equation} \begin{gathered} -\frac{1}{5}\times\frac{3}{1}\left(-3.5 \times 10^{-4} \mathrm{M}/\mathrm{s}\right)=\frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}\\\\ \frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}}=2.1\times 10^{-4}\mathrm{M}/\mathrm{s} \end{gathered} \end{equation}[/latex]
Show/Hide Don’t Forget!

Pay attention to your signs and fractions as you rearrange:

[latex]\begin{equation} \begin{gathered} \frac{\Delta\left[\mathrm{Br}_2\right]}{\Delta\mathrm{t}} \end{gathered} \end{equation}[/latex]

 

Answer: [latex]\begin{gathered}\frac{\Delta[\mathrm{Br}_2]}{\Delta\mathrm{t}}=2.1\times 10^{-4}\mathrm{M}/\mathrm{s}\end{gathered}[/latex]

Check Your Work

Writing out the rate expression correctly is key to solving this problem. Make sure your sign for the rate of disappearance terms (reactants) is negative and your sign for the rate of appearance terms (products) is positive. Also, ensure you are using the appropriate stoichiometric coefficients for your fractional terms.

Refer to Section 4.2: Chemical Reaction Rates (1).

Show/Hide Think About This!

For the reaction:

[latex]\begin{gathered} \mathrm{aA}+\mathrm{bB}\rightarrow\mathrm{cC}+\mathrm{dD} \end{gathered}[/latex]

Reaction rate:

[latex]\begin{equation} \begin{gathered} =-\frac{1}{\mathrm{a}}\frac{\Delta[\mathrm{~A}]}{\Delta\mathrm{t}}=-\frac{1}{\mathrm{~b}}\frac{\Delta[\mathrm{~B}]}{\Delta\mathrm{t}}=\frac{1}{\mathrm{c}}\frac{\Delta[\mathrm{~C}]}{\Delta\mathrm{t}}=\frac{1}{\mathrm{~d}}\frac{\Delta[\mathrm{D}]}{\Delta\mathrm{t}} \end{gathered} \end{equation}[/latex]

Does your answer make chemical sense?

Show/Hide Answer

We were given the rate of disappearance of Br (aq) to be 3.5 × 10−4 M s−1, and we expected the rate of appearance of Br2 (aq) at that time to be a smaller number as the mole ratio from the balanced chemical reaction for Br(aq) : Br2(aq) is 5:3.

[latex]\begin{equation} \begin{gathered} 5\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_3^{-}(\mathrm{aq})+6\mathrm{H}^{+}(\mathrm{aq})\rightarrow3\mathrm{Br}_2(\mathrm{aq})+3\mathrm{H}_2\mathrm{O}(\ell) \end{gathered} \end{equation}[/latex]

Our answer of  2.1 × 10-4 M/s is a smaller value, which makes chemical sense as more Br(aq) must decompose to make Br2(aq).

Show/Hide Don’t Forget!

For every 5 moles of Br (aq) that disappears, 3 moles of Br2 (aq) appears.

Reactants break up to turn into products. For this reason, we can set up these chemical reaction rate expressions and identify the rate of disappearance or appearance of one from the other.

PASS Attribution

References

1. OpenStax. 4.2: Chemical Reaction Rates. In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2022. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/04%3A_Kinetics/4.02%3A_Chemical_Reaction_Rates.

2. OpenStax. TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2024. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520).

3. OpenStax. 4.E: Kinetics (Exercises). In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2022. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/04%3A_Kinetics/4.E%3A_Kinetics_(Exercises).

4. OpenStax. 12.E: Kinetics (Exercises). In Chemistry 1e (OpenSTAX); LibreTexts, 2023. https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_1e_(OpenSTAX)/12%3A_Kinetics/12.E%3A_Kinetics_(Exercises).

5. Flowers, P.; Theopold, K.; Langley, R.; Robinson, W. R. (2019). Ch. 12 Exercises. In Chemistry 2e; OpenStax, 2019. https://openstax.org/books/chemistry-2e/pages/12-exercises.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

PASSchem Copyright © 2025 by Sharon Brewer, Lindsay Blackstock, TRU Open Press is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book