Buffers: Calculate the pH at Points Along a Weak Acid-Strong Base Titration
Question
Calculate the pH at the following points in a titration of 40.0 mL (0.040 L) of 0.100 M Barbituric acid (Ka = 9.8 × 10−5) with 0.100 M KOH.
- 40.0 mL of KOH solution added
- 41.0 mL of KOH solution added
Show/Hide Answer
- pH = 8.34
- pH = 11.08
Refer to:
Strategy Map
Do you need a little help to get started?
Check out the strategy maps below.
Show/Hide Strategy Map (Part a)
Strategy Map Steps |
---|
1. Identify how many moles of KOH have been used.
Show/Hide HintUse the added volume to this point and the given concentration to calculate moles. Make sure you convert the volume to litres (L). |
2. Identify how many moles of barbituric acid were present.
Show/Hide HintUse the initial volume and given concentration to calculate moles. Make sure you convert the volume to litres (L). |
3. Identify how much KOH has been consumed in the reaction with barbituric acid.
Show/Hide HintSubtract the moles of KOH added from the initial moles of barbituric acid. |
4. Identify the salt “left over” after the reaction occurs.
Show/Hide HintLook at the cation and anion present from the reaction of the weak acid and base. Show/Hide HintFocus on the species that has the ability to react with water and influence the pH of the solution. Refer to Section 6.5 Hydrolysis of Salt Solutions (3). |
5. Find the appropriate K.
Show/Hide HintWe are titrating a weak acid against a strong base, which means we expect a basic solution. Find the Kb of the basic species formed from the salt that is present. |
6. Use the salt in a weak base equilibrium calculation to find the concentration of hydroxide.
Show/Hide HintYou will need to create an ICE table. |
7. Calculate the pH of the solution.
Show/Hide HintOur equilibrium calculation gives us the equilibrium concentration of hydroxide. You have 2 possible approaches to calculate pH:
|
Show/Hide Strategy Map (Part b)
Strategy Map Steps |
---|
1. Identify how many moles of KOH have been used. |
2. Compare the moles of KOH to the moles of barbituric acid we started with.
Show/Hide HintYou calculated the moles of acid above in part a. In part b, we have continued to add more KOH. |
3. Determine the total volume of solution present at this point.
Show/Hide HintAdd your initial solution volume and the total volume of KOH added to this point. |
4. Recognize where we are on the titration curve and what type of solution we have.
Show/Hide HintWe are now past the equivalence point (which was in part a). Show/Hide HintThis is now a basic solution where we need to calculate the concentration of hydroxide left in solution. Determine the moles of excess hydroxide added after the equivalence point. |
5. Calculate the hydroxide concentration.
Show/Hide HintUse the moles of excess hydroxide and total solution volume to calculate the hydroxide concentration. |
6. Calculate the pH of the solution.
Show/Hide HintYou have 2 possible approaches to calculate pH:
|
Solution
Do you want to see the steps to reach the answer?
Check out this solution.
Show/Hide Solution
a. 40.0 mL of KOH solution added
“HBA” represents barbituric acid
Moles of HBA present initially:
[latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1\mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{BA}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{BA} \end{gathered}[/latex]
Moles of KOH added:
[latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1 \mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{KOH}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{KOH} \end{gathered}[/latex]
0.00400 moles KOH added − 0.00400 moles HBA present initially = 0.00000 moles KOH
Salt formed: K+ (aq) + BA– (aq), or KBA (aq)
[latex]\begin{aligned} \mathrm{KBA}\,\mathrm{(s)}&\rightleftharpoons\mathrm{K}^{+}(\mathrm{aq})+\mathrm{BA}^{-}(\mathrm{aq}) \\ \mathrm{K}^{+}(\mathrm{aq})+\mathrm{H}_2\mathrm{O}\,(\ell)&\rightleftharpoons\text{No reaction}\\ \mathrm{BA}^{-}(\mathrm{aq})+\mathrm{H}_2\mathrm{O}\,(\ell)&\rightleftharpoons \mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^{-}(\text{aq}) \end{aligned}[/latex]
[latex]\mathrm{HBA}\,\mathrm{K}_\mathrm{a}=9.8\times10^{−5}[/latex]
[latex]\begin{aligned} \mathrm{pK}_\mathrm{a}&=-\log(\mathrm{K}_\mathrm{a})=-\log(9.8 \times 10^{-5})=4.01 \\ \mathrm{pK}_\mathrm{b}&=14.00-\mathrm{pK}_\mathrm{a}=14.00-4.01=9.99 \\ \mathrm{K}_\mathrm{b}&=10^{\mathrm{-pK}_\mathrm{b}}=10^{-9.99}=1.0 \times 10^{-10} \end{aligned}[/latex]
[latex]40.0\mathrm{~mL}+40.0\mathrm{~mL}=80.0\mathrm{~mL}[/latex]
[latex]\begin{gathered} \left[\mathrm{BA}^{-}\right]=\frac{0.0040 \mathrm{~mol}}{(80\mathrm{~ml})\times\left(\frac{1 \mathrm{~L}}{1000\mathrm{~ml}}\right)}=\frac{0.0040 \mathrm{~mol}}{0.080 \mathrm{~L}}=0.050\mathrm{~M} \end{gathered}[/latex]
[latex]\mathrm{BA}^-\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)\rightleftharpoons\mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^-\mathrm{(aq)}[/latex]
State | [BA–] | [HBA] | [OH–] |
---|---|---|---|
I | 0.050 | 0 | 1.00 × 10-7 |
C | -x | +x | +x |
E | 0.050 – x | x | 1.00 × 10-7 + x |
Assume x << 0.050 M and x >> 1.00 x 10-7 |
0.050 | x | x |
[latex]\begin{gathered} \mathrm{K}_\mathrm{b}=1.0 \times 10^{-10}=\frac{[\mathrm{HBA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{BA}^{-}\right]}\\ \frac{\left[\mathrm{HBA}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{BA}^{-}\right]}=\frac{(\mathrm{x})\left(1.0 \times 10^{-7}+\mathrm{x}\right)}{0.050-\mathrm{x}}=\frac{\mathrm{(x)(x)}}{0.050} \end{gathered}[/latex]
[latex]\begin{aligned} \frac{\mathrm{x}^2}{0.050}&=1.0 \times10^{-10} \\ \mathrm{x}^2&=1.0 \times 10^{-10}(0.050) \\ \mathrm{x}^2&=5.0\times 10^{-12} \\ \sqrt{\mathrm{x}^2}&=\sqrt{5.0 \times 10^{-12}} \\ [\mathrm{OH}^{-}]=\mathrm{x}&=2.2\times 10^{-6} \end{aligned}[/latex]
[latex]\begin{aligned} \mathrm{pOH}&=-\log\left[\mathrm{OH}^-\right]=-\log(2.2\times10^{-6})=5.66\\ \mathrm{pH}&=14.000-\mathrm{pOH}= 14.000-5.66=8.34 \end{aligned}[/latex]
Answer: pH = 8.34
b. 41.0 mL of KOH solution added
“HBA” represents barbituric acid
Moles of HBA present initially:
[latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1\mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{BA}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{BA} \end{gathered}[/latex]
Moles of KOH added:
[latex]\begin{gathered} 41.0\mathrm{~ml}\times\left(\frac{1\mathrm{~L}}{1000 \mathrm{~ml}}\right) \times\left(\frac{0.100 \mathrm{~mol}\;\mathrm{KOH}}{1 \mathrm{~L}}\right)=0.00410 \mathrm{~mol}\,\mathrm{KOH} \end{gathered}[/latex]
0.00410 moles KOH added – 0.00400 moles BA present initially = 0.00010 moles KOH
[latex]41.0\mathrm{~mL}+40.0\mathrm{~mL}=81.0\mathrm{~mL}[/latex]
[latex]\begin{gathered} \left[\mathrm{OH}^{-}\right]=\frac{0.00010 \mathrm{~mol}\;\mathrm{KOH}}{(81.0 \mathrm{~ml}) \times\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~ml}}\right)}=1.2 \times 10^{-3} \mathrm{~M} \end{gathered}[/latex]
[latex]\begin{aligned} \mathrm{pOH}&=-\log[\mathrm{OH}^-]=-\log(2.2\times10^{-3})=2.92\\ \mathrm{pH}&=14.000-\mathrm{pOH}=14.000-2.92=11.08 \end{aligned}[/latex]
Answer: pH = 11.08
Guided Solution
Do you want more help?
The guided solution below will give you the reasoning for each step to get your answer, with reminders and hints.
Show/Hide Guided Solution
Guided Solution Ideas | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This question is a calculation type problem where you must be able to differentiate between when a titrated solution is below, in, or above its equivalence point and which strategy to use to calculate its pH after a certain amount of liquid is added to the solution.
Show/Hide Resource
|
||||||||||||||||
Calculate the pH at the following points in a titration of 40.0 mL (0.040 L) of 0.100 M barbituric acid (Ka = 9.8 × 10−5) with 0.100 M KOH.
Show/Hide Think About This!A titration is adding one solution into another solution. In this example, the barbituric acid would be in a flask and the KOH solution would be added from a burette. The initial barbituric acid solution would be acidic, and the solution pH will rise as the KOH is added. |
||||||||||||||||
Find the moles of each solution component.
Show/Hide Watch Out!You can find the number of moles in each solution by using the provided molarity and volume values. |
||||||||||||||||
Once you have found the moles of each component, determine the difference between them.
Show/Hide Watch Out!
|
||||||||||||||||
For each part, make sure you have calculated the total volume of solution.
Show/Hide Watch Out!Consider the initial barbituric acid solution volume and the volume of KOH solution added at each point. |
||||||||||||||||
If the solution is at the equivalence point, you will need to focus on what other products are “left” for your pH calculation. In this case, the part left over is the salt KBA (where HBA represents barbituric acid).
You will need to use your knowledge on salt solutions to recognize if either the cation or anion can react with water to impact the pH of the solution. Show/Hide Don’t Forget!To identify the salt formed, look at the overall acid base reaction: [latex]\mathrm{HBA}\,\mathrm{(aq)}+\mathrm{KOH}\,\mathrm{(aq)}\rightleftharpoons\mathrm{KBA}\,\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)[/latex] The salt formed is KBA. Show/Hide Don’t Forget!To split the salt into its cation and anion, write out the dissolution reaction: [latex]\mathrm{KBA}\,\mathrm{(aq)}\rightarrow\mathrm{K}^+\mathrm{(aq)}+\mathrm{BA}-\mathrm{(aq)}[/latex] Show/Hide Don’t Forget!Now, react each of these with water: [latex]\mathrm{BA}^-\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)\rightleftharpoons\mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^-\mathrm{(aq)}[/latex] [latex]\mathrm{K}^+\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)\rightleftharpoons\text{No reaction}[/latex] The reaction of BA– (aq) with water will influence the pH of the solution. We know this is a basic salt since hydroxide is produced. Show/Hide Don’t Forget!Do an equilibrium calculation using the identified salt component that affects the pH. Writing out the reaction will help you set up your ICE table. You should recognize what type of reaction this is and which K you need to use to calculate the concentrations. Show/Hide Don’t Forget![latex]\mathrm{BA}^-\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)\rightleftharpoons\mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^-\mathrm{(aq)}[/latex] This is a Kb reaction. We need to calculate the Kb from the given Ka.
Show/Hide Don’t Forget!To find the Kb, you will have to recall the relationship between Ka and Kb for a conjugate acid-base pair: Kw = pKa + pKb = 14.000 or KaKb = Kw If excess KOH is added (past the equivalence point), you will have excess hydroxide in solution. You will need to calculate the concentration of this excess hydroxide in order to determine the pH. Show/Hide Don’t Forget![latex]\begin{gathered} \left[\mathrm{OH}^{-}\right]=\frac{\text{ moles of }\mathrm{KOH}\text{ left over}}{(\text {Total volume in}\mathrm{ml}) x\left(\frac{1 L}{1000 \mathrm{ml}}\right)} \end{gathered}[/latex] Since you have found the concentration of hydroxide, you will now need to recall the relationships that will allow you to calculate the pH and choose your approach. Show/Hide Don’t Forget!
|
Complete Solution | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a. 40.0 mL of KOH solution added
“HBA” represents barbituric acid. Use the given concentration and volume of HBA to calculate the moles of HBA present initially: [latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1\mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{BA}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{BA} \end{gathered}[/latex] Use the added volume of KOH (40.0 mL) and the molarity (0.100 M) to calculate the moles of KOH added to this point: [latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1 \mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{KOH}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{KOH} \end{gathered}[/latex] 0.00400 moles KOH added – 0.00400 moles HBA present initially = 0.00000 moles KOH This indicates moles of acid we started with equals the moles of base added, so we are at the equivalence point. We look at the salt formed by the reaction of the acid and base and determine if it affects the pH of the solution. Break the salt into its cation and anion and react each with water. Salt formed: K+ (aq) + BA– (aq), or KBA (aq) [latex]\begin{aligned} \mathrm{KBA}\,\mathrm{(s)}&\rightleftharpoons\mathrm{K}^{+}(\mathrm{aq})+\mathrm{BA}^{-}(\mathrm{aq}) \\ \mathrm{K}^{+}(\mathrm{aq})+\mathrm{H}_2\mathrm{O}\,(\ell)&\rightleftharpoons\text{No reaction}\\ \mathrm{BA}^{-}(\mathrm{aq})+\mathrm{H}_2\mathrm{O}\,(\ell)&\rightleftharpoons \mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^{-}(\text{aq}) \end{aligned}[/latex] Since this is a basic salt, we need to determine the Kb of BA– (aq) from the Ka of HBA. [latex]\mathrm{HBA}\,\mathrm{K}_\mathrm{a}=9.8\times10^{−5}[/latex] [latex]\begin{aligned} \mathrm{pK}_\mathrm{a}&=-\log(\mathrm{K}_\mathrm{a})=-\log(9.8 \times 10^{-5})=4.01 \\ \mathrm{pK}_\mathrm{b}&=14.00-\mathrm{pK}_\mathrm{a}=14.00-4.01=9.99 \\ \mathrm{K}_\mathrm{b}&=10^{\mathrm{-pK}_\mathrm{b}}=10^{-9.99}=1.0 \times 10^{-10} \end{aligned}[/latex] Calculate the total solution volume by adding the initial volume of HBA to the volume of KOH (aq) added. [latex]40.0\mathrm{~mL}+40.0\mathrm{~mL}=80.0\mathrm{~mL}[/latex] [latex]\begin{gathered} \,[\mathrm{BA}^{-}]=\frac{0.0040 \mathrm{~mol}}{(80\mathrm{~ml})\times\left(\frac{1 \mathrm{~L}}{1000\mathrm{~ml}}\right)}=\frac{0.0040 \mathrm{~mol}}{0.080 \mathrm{~L}}=0.050\mathrm{~M} \end{gathered}[/latex] Now, we do a weak base equilibrium calculation to determine the concentration of hydroxide in the solution. [latex]\mathrm{BA}^-\mathrm{(aq)}+\mathrm{H}_2\mathrm{O}\,(\ell)\rightleftharpoons\mathrm{HBA}\,\mathrm{(aq)}+\mathrm{OH}^-\mathrm{(aq)}[/latex]
[latex]\begin{gathered} \mathrm{K}_\mathrm{b}=1.0 \times 10^{-10}=\frac{[\mathrm{HBA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{BA}^{-}\right]}\\ \frac{[\mathrm{HBA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{BA}^{-}\right]}=\frac{(\mathrm{x})\left(1.0 \times 10^{-7}+\mathrm{x}\right)}{0.050-\mathrm{x}}=\frac{\mathrm{(x)(x)}}{0.050} \end{gathered}[/latex] [latex]\begin{aligned} \frac{\mathrm{x}^2}{0.050}&=1.0 \times10^{-10} \\ \mathrm{x}^2&=1.0 \times 10^{-10}(0.050) \\ \mathrm{x}^2&=5.0\times 10^{-12} \\ \sqrt{\mathrm{x}^2}&=\sqrt{5.0 \times 10^{-12}} \\ [\mathrm{OH}^{-}]=\mathrm{x}&=2.2\times 10^{-6} \end{aligned}[/latex] Since we want pH, we need to use the hydroxide concentration to calculate it in 2 steps. [latex]\begin{aligned} \mathrm{pOH}&=-\log[\mathrm{OH}^-]=-\log(2.2\times10^{-6})=5.66\\ \mathrm{pH}&=14.000-\mathrm{pOH}= 14.000-5.66=8.34 \end{aligned}[/latex] Show/Hide HintYou could also go from [OH–] to [H3O+] and then to pH. |
||||||||||||||||||||
b. 41.0 mL of KOH solution added
“HBA” represents barbituric acid. Calculate the moles of HBA: Moles of HBA present initially: [latex]\begin{gathered} 40.0\mathrm{ml}\times\left(\frac{1\mathrm{~L}}{1000\mathrm{~ml}}\right)\times\left(\frac{0.100\mathrm{~mol}\;\mathrm{BA}}{1\mathrm{~L}}\right)=0.00400\mathrm{~mol}\;\mathrm{BA} \end{gathered}[/latex] Calculate the moles of KOH: Moles of KOH added [latex]\begin{gathered} 41.0\mathrm{~ml}\times\left(\frac{1\mathrm{~L}}{1000 \mathrm{~ml}}\right) \times\left(\frac{0.100 \mathrm{~mol}\;\mathrm{KOH}}{1 \mathrm{~L}}\right)=0.00410 \mathrm{~mol}\,\mathrm{KOH} \end{gathered}[/latex] Find the moles of KOH left after the reaction: 0.00410 moles KOH added – 0.00400 moles BA present initially = 0.00010 moles KOH This means there is excess KOH, and we have gone past the equivalence point. We need to calculate the concentration of the excess hydroxide. Calculate the total solution volume by adding inital volume of HBA to the volume of KOH solution added: [latex]41.0\mathrm{~mL}+40.0\mathrm{~mL}=81.0\mathrm{~mL}[/latex] Use the moles of excess hydroxide and the total volume to calculate hydroxide concentration: [latex]\begin{gathered} \left[\mathrm{OH}^{-}\right]=\frac{0.00010 \mathrm{~mol}\;\mathrm{KOH}}{(81.0 \mathrm{~ml}) \times\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~ml}}\right)}=1.2 \times 10^{-3} \mathrm{~M} \end{gathered}[/latex] To calculate pH: [latex]\begin{aligned} \mathrm{pOH}&=-\log[\mathrm{OH}^-]=-\log(2.2\times10^{-3})=2.92\\ \mathrm{pH}&=14.000-\mathrm{pOH}=14.000-2.92=11.08 \end{aligned}[/latex] |
Check Your Work
This question was a titration of a weak acid against a strong base. We expect the equivalence point to be basic. As we continue to add base past the equivalence point, the pH should continue to rise.
Does your answer make chemical sense?
Show/Hide Answer
An acid-base titration is done in chemistry with a burette delivering measured volumes of an acidic or basic solution to a flask that contains a solution of a base or acid. If the concentration of one solution is known, we can determine the concentration of the other solution.
In this problem, the KOH (aq) was in the burette and the barbituric acid solution was in the flask. Our answers make sense since we are reacting a weak acid and a strong base. The equivalence point should be basic as a basic salt is formed from the titration reaction. As we add more base past the equivalence point, it is the diluted excess hydroxide that makes the solution increasingly basic.
PASS Attribution
- LibreTexts TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520) (4).
- Question 7.E.17 (d & e) from LibreTexts TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520) (5) is adapted under a CC BY-NC-SA 4.0 license.
- Question 7.E.17 (d & e) is question 14.E.7.9: Q14.7.7 (4 & 5) from LibreTexts Chemistry 1e (OpenSTAX) (6), which is under a CC BY 4.0 license.
- Question 14.E.7.9: Q14.7.7 (4 & 5) is question 115 (d & e) from OpenStax Chemistry (7), which is under a CC BY 4.0 license. Access for free at https://openstax.org/books/chemistry/pages/1-introduction.
References
1. Thompson Rivers University. 7.3 Acid-Base Titrations. In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2022. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/07%3A_Buffers_Titrations_and_Solubility_Equilibria/7.03%3A_Acid-Base_Titrations.
2. Thompson Rivers University. 7.4 Solving Titration Problems. In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2022. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/07%3A_Buffers_Titrations_and_Solubility_Equilibria/7.04%3A_Solving_Titration_Problems.
3. OpenStax. 6.5 Hydrolysis of Salt Solutions. In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2022. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/06%3A_Acid-Base_Equilibrium/6.05%3A_Hydrolysis_of_Salt_Solutions.
4. Thompson Rivers University. TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2024. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520).
5. Thompson Rivers University. 7.E: Buffers, Titrations and Solubility Equilibria (Exercises). In TRU: Fundamentals and Principles of Chemistry (CHEM 1510 and CHEM 1520); LibreTexts, 2024. https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/07%3A_Buffers_Titrations_and_Solubility_Equilibria/7.E%3A_Buffers_Titrations_and_Solubility_Equilibria_(Exercises).
6. OpenStax. 14.E: Acid-Base Equilibria (Exercises). In Chemistry 1e (OpenSTAX); LibreTexts, 2023. https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_1e_(OpenSTAX)/14%3A_Acid-Base_Equilibria/14.E%3A_Acid-Base_Equilibria_(Exercises).
7. Flowers, P.; Robinson, W. R.; Langley, R.; Theopold, K. Ch. 14 Exercises. In Chemistry; OpenStax, 2015. https://openstax.org/books/chemistry/pages/14-exercises.